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Abstract. Based on the published reduction of Kronecker products, the Clebsch-Gordan 
coefficients for irreducible representations of the non-symmorphic space group of garnets 
at the symmetry points in the representation domain are calculated. 

1. Introduction 

Garnets are composite oxides with the general formula C3A2D3O,* where C is a cation 
on a pseudo-dodecahedral c site, A is a cation on an  octahedral a-site and  D is a 
cation on a tetrahedral d site. The site preference for the different cations in the lattice 
is essentially determined by their ionic radius. The c sites are occupied by large ions, 
a sites by ions of intermediate radii and  the smallest ions are located on d sites. A 
typical garnet is calcium aluminium orthosilicate, Ca,AI,(SiO,),. In the primitive cubic 
unit cell it contains four molecular constituents: 12 Ca, 8 AI, 12 Si and 48 0 atoms 
while in the unit cell of the body-centred cubic lattice it contains two molecular 
constituents (Slater 1965). Table 1 describes the garnet structure (Geller 1967). 

Table 1. Description of garnet structure. 

Point symmetry 
international 
Schoenfiies 
Space-group position 
Site coordinates 
Typical ideal formula 
Coordinatation to oxygen 
Type of polyhedron 

222 5 4 1 
D2 c3, s 4  c,  

000 3 ( y  8 4  xyz '@ 

Ca3 AI* Si3 0 1 2  
8 6 4 
dodecahedron octahedron tetrahedron 
(distorted cube) 

24c 16a 24d 96 h 
8 4  

The class of crystals with garnet structure has become increasingly important over 
the last few decades. During this period a number of refinements to the structure of 
garnets have been carried out, for instance by Prandl (1966) and by Plumier and Sougi 
(1979). The crystal chemistry of garnets has been reviewed by Geller (1967) and the 
crystal chemistry of antiferromagnetic garnets has been reviewed by Belov and  Sokolov 
(1977). Magnetic iron garnets in particular have important technological uses. They 
can be paramagnetic, antiferromagnetic or  ferrimagnetic crystalline materials. Their 
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lattice allows a broad variety of substitutions; in particular, oxygen can be substituted 
by fluorine. The literature of recent years is full of papers on studies of garnets from 
various points of view, as evidenced, for example, by the volume Garners and Perouskites 
of the Landolt-Bornstein New Series (1978). 

The non-symmorphic space group O p ( I a 3 d )  of the garnet structure is one of the 
most complicated space groups and is probably the most difficult one to handle from 
the point of view of representation theory. 

Selection rules for the holosymmetric space groups based on the body-centred cubic 
Bravais lattice have been published by Cracknell er al (1979) while the irreducible 
representations and the reduction of Kronecker products for space groups, and thus 
also for the garnet space group, have been listed in the Kronecker Product Tables of 
Cracknell er a1 (1979-80), hereafter referred to as KFT. The magnetic basis vectors 
in the garnet structure have been calculated by Prandl (1976) to test the consistency 
of the magnetic structures determined experimentally. 

In the present paper we report a computation, based on the published selection 
rules, of the Clebsch-Gordan coefficients (cccs) for the unitary irreducible representa- 
tions of the space group of garnets using the method given by Koster (1958) and  
developed by Berenson and  Birman (1975), Berenson er a1 (1975), van den Broek 
(1979) and Dirl (1979a, b, c). 

The cccs allow the basis functions of representations contained in the Kronecker 
product of two irreducible representations to be constructed (Berenson er a f  1975, 
Kunert and Suffczynski 1980). The CGC can be used to determine matrix elements of 
the effective mass Hamiltonian (Birman er a1 1976, Dirl 1 9 7 9 ~ ) .  The elements of the 
scattering tensors for scattering of light by elementary excitations in a crystal are a 
prescribed linear combination of ccc (Birman and Berenson 1974, Berenson 1981). 

2. Clebsch-Gordan coefficients for space-group representations 

We consider an  irreducible space-group representation labelled by kl, and contained 
mI,rr,,I times in the direct product of the irreducible representations labelled by k'l' and 
k'l", respectively. We decompose the space group G into cosets with respect to the 
wavevector group G ( k )  (Gard 1973): 

'k 

G =  c {R, lu , )G(k) .  (1) 
rr= I 

The number c k  of the left coset representatives {R, lum},  and thus of the arms k,  = R,k 
of the k wavevector star, is equal to l G / / l G ( k ) l ,  the order of the point group of G 
divided by the order of the point group of G ( k ) .  We find ck' and ck'' arms of the k' 
and k" wavevector stars, respectively. From the arms we compose all wavevector 
selection rules 

kb.+  kg.. = k,. ( 2 )  

RA,k'+ RA,,k"= k (3) 

We choose one leading wavevector selection rule ( W S R )  

with two space-group operations {RA, luA,}  and { R A  .lo,.,}. 
The small irreducible representations dk'" ,  dk""' and dk' of dimension dim( l ' ) ,  

dim([") and dim([), respectively, are tabulated for the first arm of the wavevector star. 
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Therefore we have to transform 

d 

d 

'"'( { Rs/ us}) = d ""( { R,,I uAt}-'{ Rsl us}{  R , , ~ U , , } )  
'""'({ Rs/ us}) = d '""( { RA,,/ uh,>}- '{  Rslvs}{ R,,,/o, ,}). (4) 

The principal, o r  (T' = A ' ,  (T" = A", (T = 1, block of CGCS is computed from the unitary 
small representations 

by performing summations over the space-group elements S = {Rs /us}  belonging to 
the intersection of the wavevector groups 

S = { R s l u s } ~ G ( R , . k ' )  A G ( R , X ' )  A G ( L ) / T  (6) 

Table 2. Coordinates of the wavevector stars at the symmetry points of the Brillouin zone 
of the body-centred cubic lattice. aL is the cubic lattice constant. 

k = (0, O , O ) r / a L  
k , = ( 0 , 2 , 0 ) T / a ~  
k p = ( l ,  1, l )T /aL  
k , = ( I ,  I , O ) r / a ,  2kW = (1, - 1, O ) n / a ,  5 k w = ( 1 , 0 ,  1 ) r / a L  
6k, = ( I ,  0, - 1 ) a / a L  9k, = (0, I ,  I)n-/aL 

13kp=(-1, - 1 ,  - l ) ~ / a L  

Ilk,=(O, 1 , - l ) r / a L  

Table 3. Wavevector selection rules, block indices and the symmetry operations { R,,~vUx} 
at the symmetry point P. 

kp+ 13kp= k, I l l  I I i 1lO}  
1 3 k p + k p = k r  2 2 1  1 I 1 3 1 0 4 1  

k p + k p = k H  1 1 1  1 1 I1  lo1 
13kp+ 13kp= k, 2 2 1  1 1 i 131 UJ 
0 -(I I I 

4 -  4 , Z . d Q L  

Table 4. Clebsch-Gordan coefficients of the space group O p  for H, X H, ( j  = 1,2 ,3)  

~~ 

H ,  X H , =  r ,++r2++r l -+rZ-  H , X H , =  r,-+r2-+r3+ H, x H~ = r,-+r,-+r,, 

a' CY'' a = l  1 1 1 a '  a" t Y = l  1 1 2 a '  a" a = l  1 1 2 

1 1  1 1 0 0  1 1  0 0 0 1  1 1  0 0 1 0  
1 2  0 0 1 1  1 2  1 1 0 0  1 2  1 1 0 0  
2 1  0 0 1 - 1  2 1  1 - 1  0 0 2 1  1 - 1  0 0  
2 2  1 - 1  0 0 2 2  0 0 1 0  2 2  0 0 0 1  

J5 -1 J3 4 J5 a 1 dl VI 1 
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Table 5. Clebsch-Gordan coefficients of the space group 0;' for H, X H,. 

H , ~ H , =  r ,++  r , _ + r 3 +  +rz+ Trz- +r3- +.r,+ +r4+ +r4- +r,- 
I* 2 -  5 +  4 +  s- 5 -  

a '  a" a = l  I 1 2  1 2  1 2  I 2  1 2 3  1 2 3  1 2 3  1 2 3  

1 1  1 
1 2  
1 3  
1 4  
1 5  
1 6  0 
2 1  
2 2  I 
2 3  
2 4  
2 5  0 
2 6  
3 1  
3 2  
3 3  I 
3 4  0 
3 5  
3 6  
4 1  
4 2  
4 3  0 
4 4  = I  
4 5  
4 6  
5 1  
5 2  0 
5 3  
5 4  
5 5  T I  

5 6  
6 1  0 
6 2  
6 3  
6 4  
6 5  
6 6  =L 

\ 6  

0 1  I O  

I O  0 1  

o *  W O  

I O  O d  

o w  G O  
I O  o w  

* I  0 0  -1  
0 I 1  0 

* I  0 0  - w  

0 U' w 0 

* I  0 0  - U' 

0 
0 1 0  

I O 0  
1 0 0  

0 1 0  
- 1  

0 1 0  

0 0 1  
0 0 1  

- W  

0 I 0, 
1 0 0  

0 0 1  
0 

- U' 

0 0 1  

T l  0 0 
1 0 0 

0 O T l  
1 
0 

0 o r 1  
TI 0 0 

U' 

OF1 0 

0 O T I  
0 O T I  

0 

d 
O F 1  0 

0 * 1  0 
TI  0 0 

*1 0 0 
OF1 0 

where T is the primitive translations subgroup of G. The column indices b', b", b in 
equation (5)  have to be chosen such that the sum with diagonal indices has a non- 
vanishing value. 

For each wavevector selection rule of equation (2)  we compute one space-group 
operation {R,IvI}  which rotates the principal block into the u'd'u block 

R I R , , k ' =  kb,  RxRA,,k" = k:,, Rxk = k,. (7 )  

{RA,,,xIuA,+d = { R , , l ~ , . } - ' { R , l q } { R ~ , l  u A , )  (8) 

In the transformation 
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Table 6. Clebsch-Gordan coefficients of the space group 0;' for P, x P, ( j  = I ,  2) .  

P , X P , =  r , _  +r,+ +r,- +rz+ 

U' U" U a' a" a = l  1 1 2 3  I 2 3  

1 1 1  1 1  
1 2  
2 1  
2 2  

2 2 1  1 1  
1 2  
2 1  
2 2  

1 I 1 1 
i l  i 1  
I i  1 i  

I I -i -i 
1 - I  -1  1 

- 1  -i I i  
- i  - 1  i l  

I --I i -i 
2 2 2 2 

P, x P, = H ,  + H4 

U' U" U a '  (I" f f  = 1 2  1 2 3 4 5 6  

1 1 1  I I  I i l  -1 

1 2  l i  --I -1  
2 1  - 1  -i --I - 1  
2 2  1 -i - 1  --I 

2 2 1  1 1  I -i 1 I 

I 2  -i - I  - I  -1 

2 1  i l  - I  - I  

2 2  - 1  -i 1 - 1  

2 2 

Table 7. Clebsch-Gordan coefficients of the space group 0; for P,xP,=T. 

+r4- +r4- 
5 -  5 -  

P3 XP, = r,+ +r,- +r3+ +r4+ +r4+ 
2 +  2 -  3 -  5+  51- 

u'=l ,  u"=l, u = l  

a' a" f f = l  I 1 2  1 2 3  1 2 3  1 2 3  1 2 3  

1 1  
1 2  
1 3  
1 4  
2 1  
2 2  
2 3  
2 4  
3 1  
3 2  
3 3  
3 4  
4 1  
4 2  
4 3  
4 4  

1 1 L O O  1 
O i l  0 

0 - w  U' 
I O  1 0 0  

O l i  0 
I i -i 0 0 -i 

- 1  0 1 0 0  
o w a  
0 r u  iw 

0 1  F1 0 0 
+i xi Ti 0 0 *i 

0 Ti rl 0 
0 -1  + I  0 0 

0 T a  T W  

0 * I  Ti 0 
TI -1  TI 0 0 * I  

0 
I 

I 
0 

0 
*ti 

T I  

0 

0 
1 

0 -w a 
1 0 0  

I 

0 
1 0 0  
o w 0  
0 * a  T w  

* I  0 0 
0 

2 1  
* I  6 0 

0 *li * W  

*i 
0 
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Table 7. (continued) 

u ' = 2 ,  u"=2,  U =  I 

a' a" a = l  1 1 2  1 2 3  1 2 3  1 2 3  1 2 3  

1 1  
1 2  
1 3  
1 4  
2 1  
2 2  
2 3  
2 4  
3 1  
3 2  
3 3  
3 4  
4 1  
4 2  
4 3  
4 4  

~~ ~ 

* 1  * I  71 0 0 TI 0 0 
0 71 T I  0 71 7 1  

0 Tfi * w  0 TU I W  

0 * I  71 0 0 = I  0 0 
0 71 71 0 7 1  *l  

* I  * I  * I  0 0 *I 0 0 
0 1 1  1 1  0 0 71 0 0 

0 Tli  T W  0 Tfi * w  
0 - w  fi 0 w -ti 

* I  0 1 0 0  - 1  0 0 
I - 1  I 0 0  - 1  0 0 

0 - 1  1 0 1 --I 

X I  0 1 0 0  - I  0 0 
o w f i  0 - w  - f i  

0 1 - I  0 - 1  1 
- I  I 1 0 0  - 1 0 0  - - 

v 8  v 8  2 \ s  .s * 8  \ 8  

a primitive translation may appear in 
and {Rrlur}, and in equations (4). 

cation: 

This is also to be observed for {R,,,lu,,,} 

The u'"'u block of CGCS is computed from the principal block by matrix multipli- 

x dk"'( { R :.,.II uA,r ,x } )  ,.,.d "'"'({ R,,.,,.Pl uAs,r,zT}) U:,atA.,o,), 

X d k 1 ( { R r I l ~ r I } ) 2 .  (9) 

In the case that the multiplicity ml.l..,I is greater than one, or the multiplicity index 
y z  1 ,  we have, by appropriate choice of the diagonal indices b'b"b of equation ( 5 ) ,  
to find CGCS for all y s  m, and ensure orthonormalisation of columns and  rows of 
the CGCS square matrix of dimension 

c k '  dim( l ' )ck . .  dim( I " )  = ck (10) mI.I..,I dim( I ) .  
I 

3. Description of tables 

Table 2 lists the wavevector stars at the symmetry points of the Brillouin zone of the 
body-centred cubic lattice. The first, or canonical, wavevector at each symmetry point 
is given as in the KFT. We use the numbering of symmetry operations and the 
multiplication tables as given for cubic groups in tables 3.1 and 3.2,  respectively, of 
the KPT. We use the fractional translations of the non-symmorphic space group 
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0 3  
I 

'3  0 

b - 3  0 -  

I/ 
d 
P x, 
L 

2 
o +  
n 

- z  

1621 

b 
* - 0  0 -  

m 13 0 0 15 

N O 3  3 0  

I 

I' - - 0  0 -  

I 

3 0  3 3  

0 ' 3  '3 0 
I I 

- 0  0 -  
I 

'- 3 
I I 

\t c -  

VI - 0  3 '- 
I 

0 '7 - 0  
I 

0 '- - 3  

' -  0 0 -  

~ I *  
I -  

I 

? ,  + 1 :  0 -  'j 0 

i 

N 0 0 0 - 0 3 - 0  

- 0 - 0 3 - 0 3 0  

I 

I 
.- E 1  

S r  
N 0 0 ' - 0 3  0 0 - 

- 0 3 0 c '- 0 0 

- 0 0 - 0 0 0 3 '- 
' I  

I U 
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i 

i + 

i + 

i + 

I + 

2c + 

2c + 

z 

IL 
x* 
n 

a. 

3 0  

0 '3 

- 3  

3 0  0 a  
I 

0 '3 '3 0 

- - 0  - -  
I 

0 -  I 

7 "  
c -  

3 -  - 3  
I 

- 3  0 -  
I 

3 '7 - 3  
I 

c '- - 0  

- 3  0 '7 
3 -  - 3  

c -  

- -  
I -  - -  - 

13 0 3 la 

c a  3 3  

- -  - 3 -  

= a  

'3 c 

0 -  

I 

N 

- 0  

3 -  
I 

'- 0 

N 

' -  c I 

3 -  

- 3  N 

(3 0 0 13 

0 3  3 0  

- 3  0 - N  

I 

0 0 0 - C O - 0  
I 

3 - 0 0 - 3 3 0  N 

3 - 3 3 - 3 0 3  
I 

0 0 0 - O C - O N  

- 0 0 0 c '- c 0 
I 

0 0 ' -  3 0 3 3 - N 

0 3 - 0 3 c 3 '- 
I I 

'- 0 0 0 0 - c 3 N 

- N c, d - N yr. d - N c, d - N h d 

- - - - N N N N m m m c, * -? d d 
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O p ( I a 3 d )  and the labels and generators of the irreducible representations of the KPT. 

The representation matrices and the principal blocks of CGCS have been computed 
with the aid of the computer program of Kowalczyk et a1 (1980). 

Table 3 presents the wavevector selection rules of the group 0; for PXP. For 
each wavevector selection rule we give the indices (+'"'U of the corresponding block 
of CGC and the symmetry operation { Rmzl u,~} which rotates the principal block into 
the u'"'u block. 

The wavevector selection rules for N x N have been given explicitly by Suffczynski 
and Kunert (1982) and the CGCS for N x N = r by Kunert (1983). 

Tables 4 and 5 present the computed CGCS for H x H and tables 6-8 for P x P .  
Table 9 presents CGCS for N x N  = H and table 10 the principal block of CGCS for 

Table 10. Principal block of Clebsch-Gordan coefficients of the space group 0: for N , X N ,  ( j = l ,  2).  

N , X N , =  N ,  + N ,  +NI +N, +N2 + N2 + N> +N> 
~~~~~~ ~ 

" a "  a=l  2 I 2 I 2 1 2 1 2 1 2 1 2 1 2 

I 1  I O  0 - 1 1 0  0 - 1  
1 2  1 0 0 - 1  I O  0 - 1  
2 1  0 - 1 1  0 0 - 1  I O  
2 2  0 - I  I 0 0 - 1  1 0  

2 2 2 2 2 2 2 2 

Table 1 1 .  The diagonal indices b'b"b and the phase factors of the Clebsch-Gordan 
coefficients proportional to those printed in tables 5, 7 and 8. The phase factor is omitted 
if it is equal to one. For each representation the columns corresponding to consecutive 
values of the multiplicity index are arranged in the same order as in tables 5 ,  7 and 8. 

H,XH,= r3- +I-, 

I l l  44 1 161 43 I 
221 H' 5 5 1  r?. 251 w 521 ri. 
331 r?. 661 H' 351 611 w 

H,XH,= r,+ + r4- + rs+ +rs- 

131 31 I 141 361 131 31 I 141 36 I 
431 - 1  641 - 1  411 - 1  631 - I  46 I 64 1 41  I 63 1 

P, X P , =  r4- + rs+ + r4- + rs- 

I 1 1  141 I 1 1  141 I l l  141 I l l  141 
221 i 231 221 i 231 221 i 231 221 i 231 
331 i 321 - 1  331 -i 321 331 -i 321 331 i 321 - I  
441 - 1  411 - 1  44 1 41 I 4 4  1 41  I 441 - 1  411 - 1  

131 311 I l l  141 32 I 33 I 
241 -i 421 -i 22 1 231 -i 411 i 441 -i 
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N x N = N. In the tables of CGCS we use the symbols 

U = exp(ir /6)  w = e x p ( f i r )  

and an overbar stands for complex conjugate. Empty entries correspond to zero 
elements. The number at the bottom of each representation column divides each 
element of that column for normalisation. In tables 5 and 7 the upper signs refer to 
the upper and the lower signs to the lower description line of the table, respectively. 

The CGC for P3 xP, in tables 7 and 8 agree with those published by Davies and 
Dirl (1984). This provides a good cross-check of work performed independently. 

Since our program prints all non-vanishing CGCS of the principal block we can give 
a few details concerning the case of multiplicity greater than one. In table 11, below 
the representation symbol, we give in the first line the sets of diagonal indices b'b'lb 
of equation (5) for which the CGCS are given in tables 5, 7 and 8. The subsequent lines 
give the sets of diagonal indices for which the CGCS are proportional to those of the 
first set, with the phase factor given on the right. This phase factor is omitted if it is 
equal to one. 

4. Conclusions 

In contrast to the case of crystal point groups (Kotzev and Aoryo 1982a, b) the tables 
of CGCS for space groups have not been published extensively until now. We have 
computed the CGCS ofthe non-symmorphic space group of garnets for the unsymmetrised 
squares of the single-valued representations of Cracknell et al(l979-80). The computa- 
tion of CGCS for the complicated space group of garnets with the aid of the computer 
program of Kowalczyk et al  (1980) was a test of the program's capabilities. The 
presentation of CGCS for the space group of garnets, apart from its intrinsic value, may 
be useful for comparison of future results of more extended and more automatic 
programs. 
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